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A FRACTIONAL BROWNIAN MOTION MODEL OF CRACKING

P.S. ADDISON, L.T. DOUGAN, A.S. NDUMU, W. M.C. MACKENZIE

Civil Engineering Group, School of the Built Environment, Napier University, Merchiston Campus,
10 Colinton Road, Edinburgh, EHJO 5DT, Scotland, UK.

An attempt is made to find the fractal cutoff of crack profiles on the tension face of concrete beams
subjected to uni-axial bending. Previous work by the authors has shown that such cracking can be
interpreted as a non-Fickian diffusive phenomenon resulting from a self-affine random fractal
process: specifically fractional Brownian motion (IBm). In addition, a spatial description of the
cracking geometry can be found from experimental data using both a (Hurst) scaling exponent and a
diffusion-type coefficient. Herein the authors find that the fractal description of the crack profiles
extends down to less than 0.75pnm. The use of a scanning electron microscope to probe the crack
profile (and surface) at smaller scales is discussed and the synthesis of crack surfaces using fBm is
described briefly.

1 Introduction

An understanding of the behaviour of cracking in structural elements is of great
importance in the analysis and subsequent safe design of engineering structures. As yet,
however, there is no definitive theoretical framework for the propagation of cracks and
resulting fracture energy. It has recently been found that the irregular geometries of both
crack surfaces and crack profiles in a variety of materials may be described (and
subsequently modelled) using fractal geometry. The use of fractal geometry to describe
cracking phenomena is now widespread (e.g. see referencesl"). Previous work by the
authors 5'6 has shown that crack profiles on concrete beams in tension can be modelled as

iBm trace functions which require a Hurst exponent and a spatial diffusion coefficient to
completely describe the spatial distribution of the crack. In addition, the authors have
linked the fBm description of the cracking phenomena to an effective Fokker-Planck
equation which described the diffusive nature of the cracking phenomena through space.
In this paper the cracks are investigated at higher resolutions in an attempt to determine
whether a fractal cut-off scale exists. The value of such a Euclidean threshold is of
significant importance in the determination of the energy of fracture.

2 The Diffusive Nature of fBm

Fractional Brownian Motion (mBm) is a generalisation of Brownian motion suggested by
Mandelbrot 7 which has found a variety of uses in the natural sciences (see for example
Addison and Ndumu 8 and the references contained therein). Fractional Brownian motion
is defined as:

y(x) I (l { L(X X') H 2 (.x') H ] dW(x') + fX (x -x') H 2 dW(x1)

r(H + Y21)



118

where dW(x) is a Gaussian random function with zero mean and unit standard deviation, H
is the Hurst exponent9, and F is the gamma function. When H=0.5 Eq. (1) models classical
Brownian motion which produces normal, or Fickian, diffusion. From Eq. (1) it may be
seen that the imm process is correlated over all length scales, i.e., it has an infinite
memory associated with it.
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Figure 1: Diffusive scaling of an fBm (H=O. 75 Kf=lO)

An example of a superdiffusive fBm (i.e. one with H > 0.5) is shown in Fig. 1. The
diffusive scaling of the fBm process shown in Fig. 1 may be defined as

y= sH (2)

where cy is the standard deviation of the y-excursions (Ay) on the trace for a window
length s; Kf is a fractal diffusion coefficient. Eq. (2) is in fact the standard deviation of the
probability density function

P(y,x) =4rKx
2M ep{ 4 Kxf.2. (3)

which is a non-Fickian scaling of a Gaussian probability density function through space.
(If H = ½2 then Eq. (3) reduces to the solution of a Fickian based diffusion from a point
source.) Furthermore, it has been shown by Wang and Lung'° that Eq. (3) is the solution
to the effective Fokker-Planck equation:

9P(y,x) _ 2H Kf x2H-1 2 p(Y'X) (4)

which describes the probability of occurrence ofy(x) at spatial location x. Eq. (4) is in fact
a generalisation of the classical Fickian diffusion equation with a spatial diffusion
coefficient. The equation reduces to the classical equation for H=0.5.
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It can be seen from the above that, over a large number of realisations, fBm
approximates a non-Fickian diffusive process described by Eq. (4). The authors have
previously shown that persistent fBm (H > 0.5) is a suitable model for cracking on the
tension face of a concrete beam in bending5. In addition, both H and Kf are required for a
complete geometric description of the cracking phenomena. It was shown by the authors
how these parameters can be found from experiment. The mean values of Kf and H were
found for a series of flexure cracks in concrete beams to be 0.084 and 0.77, respectively
(i.e. superdiffusive surfaces with fractal dimensions between 1 and 1.5). This gives the
standard deviation of the cracking across the beam as ary = %x .084 s077 where both s and

Sare expressed in millimetres. Thus, for the 40mm wide specimens used in the study the
expected standard deviation of the crack displacement across the beam is 7.02mm. These
experimentally derived parameters can be used to synthesise crack patterns using fBms.
An example of this is shown in Fig. 2 using the nmm generation method described by
Addison et al., 11. In the figure a crack with measured values of H and Kf of 0.75 and 0.133
respectively is shown together with a synthesised crack with the same parameter values.
The similarity between the two traces is evident from a visual inspection of the plot.
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Figure 2: Comparison of synthesised and experimental cracks

3 Crack Profile Analysis

Natural fractals tend to exhibit fractal characteristics over a limited range of scales12.
Below a cut-off level, the natural fractal object tends to revert to a Euclidean form. The
authors have recently pursued the search for the cut-off length scale in the crack patterns
as it has implications for the measurement of the true areas of crack surfaces and hence
energy dissipation across the surface. Fig. 3 shows one of the cracks studied by the
authors at a magnification level of 6x. Seven boxes are placed on the crack profile
indicating regions where a closer inspection was taken of the crack profile at the higher
magnification of 40x. In addition, two smaller boxes indicate locations where the crack
was studied at 50x and 100x magnification, respectively. Fig. 4 contains a log-log plot of
ay against s. From such a plot it is possible to calculate both H and Kj. A line of slope
H=1 is also given in the plot, corresponding to a dimension of unity, i.e. a smooth
Euclidean curve. It would be expected that the plotted curves tend to this slope at the
Euclidean cut-off.
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Figure 3: Crack profile showing analysed regions
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bottom left) two sections representing 50x and 100× magnifications.

Table 1 contains the H and Kf values for the various regions of the crack in Fig. 3
measured from Fig. 4. It can be seen from the table that measured H values for the whole
crack and the average values from the seven boxes A to G are in good agreement.
However, the Kf values between the two are significantly different. In fact the KJ values
vary over a large range (0.004-0.118) across the selected boxes. The reason for this
variability is as yet unclear. Zooming in at 50× and l00x again produces persistent values
of the Hurst exponent. It can be seen from the plot that the fractal description of the curves
extends down to the lower limits of the 100×x magnification: this relates to a resolution of
7.5× l0"mm of crack per pixel.
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Tablel: The Measured H and Kf Values for the Crack in Figure 3.

H Kf
Whole Crack (6x) 0.74 0.069
A (40x) 0.87 0.093
B (40x) 0.64 0.004
C (40x) 0.68 0.008
D (40x) 0.61 0.018
E (40x) 0.72 0.015
F (40x) 0.82 0.118
G (40x) 0.83 0.091
Average (A-G) 0.74 0.050
50x 0.71 0.025
10OX 0.74 0.030

4 Concluding Remarks

From Fig. 4, the lower limit to the fractal behaviour of the cracking patterns (if it exists!)
appears to be below 0.7511m. This is significantly less than the value between 10 and 20
Ium (which is the approximate size of calcium silicate hydrate) suggested by Souma and
Barton 4. The authors have recently initiated research to search for a fractal cut-off scale at
higher resolutions at the crack edge using a scanning electron microscope (e.g. Fig. 5).
This work has so far proved inconclusive due to the difficulty in finding reasonable
vertical sections through the crack edge at these higher scales. It is hoped that an
improvement in the experimental techniques will lead to a better understanding of the
crack geometry at these smaller scales.

Figure 5: An electron microscope image of the crack profile at 2000x
magnification. Note the difficulty in defining the edge of the crack.
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The determination of the true fractal cut-off scale has implications for the synthesis of
prefractal fBm crack profiles and surfaces and hence the calculation of crack energy
across the crack surface. If the crack surface is in fact fBm, then the crack profile may be
treated as the result of a vertical cut through the surface"3 . If this proves to be the case,
then it is known that the fractal dimension of the surface DsuOce is equal to Dprof'ie+l. It is
relatively simple to generate such a surface using a variety of methods. It should be
possible therefore to synthesise the crack surface using the Kf and H values found from
experiment. Fig. 6 shows an fBm surface generated using the turning bands method' 4. The
authors intend to pursue the measurement and synthesis of crack profiles and surfaces in
order to define the fracture energy of cracking in terms of a fractal geometric framework
based on fBms.
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Figure 6: An iBm surface generated using the turning bands method (H=0.8)
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